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Outline

¢ Neutron scattering data analysis development with liquid
scintillators at WNR

— correlated n-y measurements from neutron scattering

¢ |deal detector search, challenges, and array development

e Potential for correlated cross section measurements
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Scattering is the Most Probable n Reaction,
but Cross Sections have Large Uncertainties

e Scattering is usually the most likely

neutron interaction

® Uncertainties are prohibitive for

simulation accuracy

e Scattering cross sections are the

evaluation “trash bin”t
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Scattering is the Most Probable n Reaction,
but Cross Sections have Large Uncertainties

e Scattering is usually the most likely e w 539Pu(n 0 desmnE:
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Liquid Scintillators Used for Initial Studies

* Able to leverage data collected from other experiments using the
Chi-Nu liquid scintillator array
— High statistics, to better guide data analysis
— Difficult to obtain high statistics with trial detector purchases

e Start with easy case: natural carbon

Begin by simply looking for n-v coincidence in post-processing analysis
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Random Coincidence Backgrounds Eliminated

e Random coincidence rates derived
form Poisson probabilities for
uncorrelated detection rates
— true coincidence rate must be low

e Calculate the total probability for:
1. Detecting a v at time {,

2. Not detecting n over coinc. time
th—t,
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Extract n, v, and Correlated n-~ Distributions

Cross Section (b/sr)
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Sensitive to All n-v Producing Reactions

Fe levels are reasonably dense

The liquid scint. time resolution
allows for 56Fe low-lying state
separation

Natural Pt shows inelastic
scattering, (n,2n), and (n,3n)
reactions, with separation

Elastic scattering data also exist
from these measurements

Potential for correlated
measurements of these different
cross sections
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Search for the Ideal n-y Detector

Time Yy Energy
Res. Res.

Pulse nEnergy vy Energy Det.

PSD Length Range Range Efficiency

HPGe 5-10 ns <1% N/A >100 ps N/A Det. Dep. Onlyy

. . Poorly
CLLBC 1.5 ns - Near Thermal — | >0.2 MeV | Both Obs.
Perfect

- 10 MeV <7 MeV y>>n
Near >0.2 MeV Both Obs.
CLYC o - Perfect -- <7 MeV y>n
CLYC-6 1.5 ns Near Thermal — | >0.2 MeV | Both Obs.
Perfect

10 MeV <7 MeV y>n
CLYC-6 possess all necessary characteristics, with some drawbacks
Semi-long waveforms: 1.5” detectors to reduce count rates
— PSD-overlap of éLi(n,t) and 33Cl(n,p): Increased target-detector distance
— Need large number of detectors to have sufficient efficiency

Y
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Array Structure Development is in Progress

e CAD design work in prog.
— Eames Bennett, P-3
— Series of candidate designs
exist

¢ Transferring candidate array
designs to MCNP for
optimization studies
— e.g., reduce impact on
measurement from
environmental scattering,
while maximizing efficiency
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Response Matrix Technique Reqired for n-Det.
e Typical treatments of detection efficiency work poorly for neutrons

* Need complete description of n interactions with exp. environment
— Especially for smooth distributions (e.g., high level density scattering)

e This was handled with MCNP for Chi-Nu PFNS measurements

— The 35Cl(n,p) cross section is poorly known...
_— Need an alternative method
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Correlations Between Cross Sections

elastic inelastic n,2n n,3n fission capture nubar pfns

(x-megn)/sd

AN I —

e —= =

[ &

See Sigeti et al. LA-UR-18-22053 and LA-CP-18-00796
Also discussed at S. Mosby colloquium on 4/15 and WRIG on 4/6

Correlations between 23°Pu cross sections from fitting to Jezebel

critical assembly

— Shows a, "...quantitative picture of compensating errors.”

— Strong prior correlations assumed between elastic and inelastic, to match
total XS

— 2D correlation matrices are more informative
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XS Correlations \ E
Jezebel fitting S e . e
enhanced el./inel. PFNS 7 1
anticorrelation, but v
the correlations Capture- 105
were already there! . |
Anhcorrelatlgn came ... o
from evaluation n2n

. n,2n) -

requirement to sum _
to the total inelastic: 05
No experimental Flastic]
correlation input Total] - 1
Exp. correlations are I % % 35 & 5 . 2

D4 e £ = g2 % o
£ L 0O

largely positive...

What if experimental elastic/inelastic correlations were reported?

~
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Correlated XSs Can Make a Big Impact!

Consider a nucleus with only elastic and inelastic scattering XS’s

o(n,n) =1.0+£0.1 b (10% unc.)
o(n,n’)=1.0£0.1 b (10% unc.)
Anticorrelated or

No Correlation

o(n,tot) =2.0+0.04 b (2% unc.)

Positive Correlation

e TS

-10% F--- et lteapaantt

Cross sections can vary
within the entire uncertainty

range if the sum is correct
%@ LA-UR-21-XX0XXX
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Cross section must vary in the
same direction and sum properly

~ Variation range severely limited
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Conclusions

¢ Promising capabilities with Chi-Nu liquid scintillator array
— Limitations pointed towards another more ideal detector

e CLYC-6 detector array design in progress
— CAD modeling — MCNP — Optimization

¢ Refinement of experimental techniques is required to properly
use these detectors
— Experimental detector response matrix

¢ Potential for correlated elastic and inelastic scattering cross
section measurements
— Also measure (n,2n)? (n,3n)? Total XS?

¢ [nitial work funded by LDRD Project 20190588ECR
¢ Experimental measurement and development campaign
underway through LDRD Project 20210329ER

Thanks to Matt Devlin, John O’Donnell, Eames Bennett, Morgan
White, the LANSCE accelerator staff, RMD inc., and you!
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Outgoing Neutron Energy (MeV)

MCNP Separates Rxns = Corrections per Rx

2 3 4 5 6 780910
Incident Neutron Energy (MeV)

MCNP® simulation of '2C+n
initially yields all reactions

MCNP® + PTRAC allows for each

reaction to be separated

Can be used for in-target scattering -
and other corrections individually

for each reaction
t:: LA-UR-21-XXXXX
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Kinematic and PSD Elpasolite Capabilities

e Beam-off 2°2Cf measurements at two target-detector distances
¢ 1 m distance kinematics and PSD shown here

Near perfect PSD separation
n detection via 6Li(n,t) and %*Cl(n,p) reactions

® QOverlap in PSD space, but separable by kinematics with sufficient distance

k - A 1 L L .3
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Higher v Response Ideal for y-Coincident n’s
Data from carbon can be compared to determine relative n-v response
Higher efficiency for v than nin elpasolites (opposite of liquids)
— Reduces chance of missing a  for an inelastically scattered neutron

CLLBC has very little neutron response

* Liquid Scintillators W ‘ 1.5” CLYC-7 : 1.5” CLYC-6
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